Numerical simulation study on discharging process of the direct-contact phase change energy storage system

نویسندگان

  • Weilong Wang
  • Hailong Li
  • Shaopeng Guo
  • Shiquan He
  • Jing Ding
  • Jinyue Yan
  • Jianping Yang
چکیده

The mobilized thermal energy storage system (M-TES) has been demonstrated as a promising technology to supply heat using waste heat in industries to distributed users, where heat discharging determines whether M-TES system can satisfy the required heating rate. The objective of this work is to investigate the solidification mechanism of phase change materials (PCM) for heat discharging in a direct-contact thermal energy storage (TES) container for M-TES. A 2-dimensional (2D) numerical simulation model of the TES tank is developed in ANSYS FLUENT, and validated with the experimental measurement. Effects of flow rate and inlet temperature of heat transfer oil (HTO) were studied. Results show that (a) the discharging process includes the formation of solidified PCM followed by the sinking of solidified PCM; (b) the discharging time of M-TES can be reduced by increasing the flow rate of heat transfer oil. When the flow rate is increased from 0.46 m/h to 0.92 m/h, the solidified PCM is increased from 25 vol.% to 90 vol.% within 30 min; (c) the discharging time can be reduced by decreasing the inlet temperature of HTO. While the inlet temperature is reduced from 50 C to 30 C, the solidified PCM is increased from 60 vol.% to 90 vol.% within 30 min. This work provides engineering insights for the rational design of discharging process for M-TES system. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Investigations on Al2O3–Tricosane Based Heat Pipe Thermal Energy Storage

The enhancement of operating life cycle of electronic devices necessitates the development of efficient cooling techniques. Therefore, in the present work the effects of employment of Phase Change Material, in the adiabatic section of heat pipe for electronic cooling applications were experimentally and numerically investigated. Tricosane (100 ml) is chosen as PCM in this study, where Al2O3 nan...

متن کامل

Optimal Scheduling of Battery Energy Storage System in Distribution Network Considering Uncertainties using hybrid Monte Carlo- Genetic Approach

This paper proposes a novel hybrid Monte Carlo simulation-genetic approach (MCS-GA) for optimal operation of a distribution network considering renewable energy generation systems (REGSs) and battery energy storage systems (BESSs). The aim of this paper is to design an optimal charging /discharging scheduling of BESSs so that the total daily profit of distribution company (Disco) can be maximiz...

متن کامل

Improvement of thermal performance of a solar chimney based on a passive solar heating system with phase-change materials

Passive solar systems such as solar chimneys need solar radiation in order to work. Therefore, they cannot present stable natural ventilation when solar energy vanishes: to have a more robust and stable condition, solar energy should be stored during the day and released back during the night. Phase change materials can save additional thermal energy during the day and release it during the...

متن کامل

Improvement of thermal performance of a solar chimney based on a passive solar heating system with phase-change materials

Passive solar systems such as solar chimneys need solar radiation in order to work. Therefore, they cannot present stable natural ventilation when solar energy vanishes: to have a more robust and stable condition, solar energy should be stored during the day and released back during the night. Phase change materials can save additional thermal energy during the day and release it during the nig...

متن کامل

Transient Two-Dimensional (r-z) Cyclic Charging/Discharging Analysis of Space Thermal Energy Storage Systems (RESEARCH NOTE)

A two-dimensional transient axi-symmetric model was developed to study the effects of various thermal and geometric parameters on cyclic heating and cooling modes of a phase-change thermal energy storage system. The high-temperature thermal energy storage device utilizes LiH for heat sink applications to store the waste heat generated during power-burst periods. The stored heat is then discharg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015